

Diagnosing Content Package

Issues

Prepared by Dave Hecker

Last updated 5/31/2017 by Dave Hecker

Learner Community® Diagnosing Content Package Issues Page 1

OVERVIEW

WHAT IS A CONTENT PACKAGE?

A “content package” is a ZIP file that contains files that display or launch content. Learner Community currently

supports these kinds of content packages:

• AICC HACP

• SCORM 1.2

• SCORM 2004

• Web

To use a content package, usually it’s as simple as…

1. Upload it into Learner Community.

2. Create a Content Package learning activity and point to a valid “launch page” in the package.

…but sometimes you may encounter unexpected issues, especially if it’s the first time you’ve imported a content

package from a new publisher or authoring tool.

HAVING TROUBLE?

When you encounter an issue with a content package, it is helpful to keep in mind that Learner Community is

successfully launching many different content packages from many different clients, which means that the most likely

source of any issue is the content package itself.

Although this document can’t anticipate the specific issue you’ve encountered, it does provide specific steps that you

and/or your content vendor/publisher can use to diagnose issues. Once the source of an issue is identified and

understood, it can usually be resolved (or at least worked around until a proper resolution can be made).

To diagnose an issue, start with the Initial Checks section that applies to any content package, and covers general issues

such as content that fails to load. If the content is displaying properly but just isn’t communicating status or

bookmarking information to Learner Community, then refer to the section for the specific type of content package.

Some of the diagnostic steps require a web browser with good developer tools available. This document uses Google

Chrome to walk through those diagnostic steps. If you’re already comfortable with the developer tools available in

another web browser (such as Mozilla Firefox with the Firebug extension installed and enabled, Microsoft Internet

Explorer 10 or higher, or other capable web browser) then you can use those tools (though you may still want to use

Google Chrome to make it easier to follow the diagnostic steps).

Learner Community® Diagnosing Content Package Issues Page 2

INITIAL CHECKS

The following initial checks can be performed for all types of content packages. If additional diagnosis is needed, refer

to the AICC or SCORM section for additional investigation instructions. NOTE: There is not a special section for “Web”

content packages, because they don’t self-report status.

FRAME VERSUS WINDOW?

If you are viewing the enrollment detail in the "Full Screen” view…

…then there is a quick initial test you can do. (Skip ahead to the next section you’re not using this view.)

In the “Full Screen” view course content gets loaded into an iFrame that’s embedded on the page. Although most

modern authoring tools produce content that behaves properly in a frame, there may be some exceptions. For

example, as of March 2014 Articulate Storyline on an iPad (and perhaps other tablets) doesn’t display properly in an

iFrame. Hopefully future releases fixed that exception, but if not you may need to provide a workaround.

To determine whether the issue you’re seeing could be a “frames versus window” issue:

1. Click this button to “Leave Full Screen” view:

2. Launch the learning activity in the enrollment detail view that shows your portal’s template. That view always

opens a brand new web browser window for the content to operate in.

If the content package works properly when it is in its own dedicated browser window, but not when it's embedded in

the full screen view’s iFrame, then the content package is not "frames friendly." In this case, contact the package's

author (or the publisher of the authoring tool you used to create the package) to see if they have an update that lets

their content function properly in a frame.

If the publisher has no solution, then you might work around the issue by creating a different "start" page that would

detect if it was running inside a frame and (if so) force a new window to open for the content.

BROWSER-SPECIFIC?

If the issue still occurs in the classic view, try testing the content in one or two different web browsers. If the issue

happens in all web browsers, then it’s probably not a browser-specific issue, so skip ahead to the next topic.

If the issue doesn’t occur in some browsers, then it’s likely a content-related issue that manifests only under certain

web browsers, or certain web browser versions. For example, the last couple of releases of Internet Explorer

introduced major changes, and some authoring tools had to be updated to address issues. Until the updates were

available, enabling Internet Explorer’s “compatibility view” mode for the URL where the course content resides would

eliminate the issues. (If enabling “compatibility view” solves the issue, then it’s an issue with the content.)

You should contact the authoring tool’s vendor to determine if an updated version of the authoring tool is available. If

not, search their forums and report the issue to see if there’s a known resolution or workaround for the issue you’re

seeing.

Learner Community® Diagnosing Content Package Issues Page 3

MISSING FILES AND/OR UNUSUAL FILE TYPES?

If some content isn’t being displayed in any web browser, or the course gets “stuck” while loading and never starts

playing, then check to see if the course is missing files and/or is using some uncommon file types.

Diagnosing in Google Chrome:

If you’re not using the “Full Screen” view, click this icon to “Enter Full Screen” view:

Press F12 to open the Developer Tools, and then click the Network tab that will show all network requests being made

by the web browser.

Click the learning activity to launch the content package, and observe the activity on the Network tab. The first request

should be a POST to /activity/enrollment/startactivity, which should followed by a series of additional requests that

vary depending on the specific content package you launch. For example:

The “Status” of each request should normally be “302 Found” or “200 OK”. When you reach the point where the

content gets “stuck” or does not display properly, scroll through the Network items to see if you see any GET requests

which resulted in 404 Not Found:

A “404” error can mean that the requested file just doesn’t exist in the content package, or it could exist but the web

server might not be configured to serve that file type. (Most web servers are configured to serve common file

extensions such as .HTM, .HTML, .TXT, .GIF, .PNG, .JPG, and so on. If the course content uses files that have uncommon

file extensions, those requests might get a “404” error instead of receiving the actual file.

If you find any “404” errors:

1. Right-click anywhere on the row.

2. Choose “Copy Link Address”

3. Switch to an application where you can make diagnostic notes (e.g., Word or an email document) then Paste

the link address.

Learner Community® Diagnosing Content Package Issues Page 4

If the link address ends with a common file type (e.g., .GIF or .JPG) then you can be reasonably confident that the web

server is configured to serve those file types (especially if you can find other successful requests for the same file type)

so that file is most likely missing from your content package. NOTE: It’s not uncommon for authoring tools to request a

file that doesn’t exist—one or two missing files, especially small placeholder graphics, are not likely the source of

completely getting stuck, or having an entire page not display properly.

After gathering your list of files that were not found, check the content package to be sure the file exists. You should

inspect the actual content package version that’s loaded into Learner Community by doing the following:

1. Go to the Admin Dashboard.

2. Open Products, and then select Learning Products.

3. Find the learning product you were testing, and then click Edit.

4. Click the Lesson Structure tab, find the learning activity you were testing, and then click Edit.

5. At the bottom of the “Edit Content Package Learning Activity” dialog, a complete outline is displayed of all the

files that exist in the content package. Carefully follow the paths of each link that wasn’t found.

a. If the file exists:

i. Carefully double-check the full path to be sure the full path matches exactly. If it does, then

provide Learner Community support with the details (including the specific learning product,

learning activity, and link address) to be investigated.

b. If the file doesn’t exist:

i. Highlight and copy the “Package” name, and note which “Version” is currently selected.

ii. Click “Change” and search for the package name to see if a newer version was uploaded, but

just not selected. If so, consider selecting the newer package.

iii. If the selected version is correct, then check your local ZIP file to see if the file exists there. If

it’s not there, then correct that issue. Once you add it (or if it’s already there) then upload

that as a new version of the existing package, and then be sure to choose that new version

before you test again.

Learner Community® Diagnosing Content Package Issues Page 5

AICC CONTENT PACKAGES

Depending on the content page, you might be able to see AICC form POSTs happening to Learner Community. If so,

those POSTs will also provide a view into the responses coming from Learner Community.

Here’s how to try observing the course’s AICC communication (using Google Chrome):

1. Launch the course (to view its Enrollment Detail page).

2. If you’re not using the full screen view, click this icon to “Enter Full Screen” view:

3. Before launching the AICC learning activity, press F12 to open Developer Tools.

4. If the Developer Tools opens in the same window, click the “unlock into separate window” icon to move

the tools into their own window.

5. Click the Network tab. NOTE: There may be network activity already displayed; click the “clear” icon to start

fresh.

6. Click the “filter” icon and in the text box type AICCHACP:

7. Launch the AICC learning activity, and review the Network activity. With the filter in place, you’ll probably only

see a few entries; these are the ones you want to inspect:

8. Click on “AICCHACPCommand.ashx” and the right side of the Developer Tools window will show details of that

POST, for example:

Learner Community® Diagnosing Content Package Issues Page 6

INSPECTING EACH POST

By clicking each AICCHACPCommand.ashx POST in sequence, you can inspect each command issued by the course

content, as well as the response that Learner Community provided to the course.

Data Submitted to Learner Community

On the Headers tab, find the Form Data section to view the data that the course posted in to Learner Community. The

first POST usually looks something like this:

The session_id is different each time you launch a course. The “GetParam” command is the first call that content

makes, which is a request to fetch current information for the activity. When making a “GetParam” POST the aicc_data

parameter is empty.

Learner Community’s Response

Click the Response tab to view the data that Learner Community returned to the course. As mandated by the AICC

specifications, each response will look something like this:

Each response will have the first 4 lines. Everything after aicc_data= is data that’s currently stored in Learner

Community. As you interact with the course, the course will modify that data, and it will eventually POST that modified

content back to Learner Community for storage.

SERVER-SIDE OBSERVATION

If you’re using content that uses a communication method that’s not seen by the web browser’s developer tools, there

is a way to temporarily enable server-side diagnostics on the learner account that you’re using for testing (presumably

on Staging). After diagnostics mode is enabled on a specific learner account, detailed logging of all server-side AICC

communication will be captured for future analysis.

Learner Community® Diagnosing Content Package Issues Page 7

SCORM (1.2 AND 2004) CONTENT PACKAGES

DETERMINING VALID LAUNCH PAGES

1. Unzip the SCORM content package ZIP file on your local PC (be sure you’re using the same ZIP file that’s being

used on the learning activity).

2. Open "imsmanifest.xml" into a text editor (e.g., Notepad, Notepad++, EditPlus, etc.) and search for the word

webcontent—it usually exists once, but can exist many times. Each occurrence that's found should be on a

line that starts with "<resource" followed by several attribute names and values.

3. In each "webcontent" resource you find, the href value is a valid "launch page." For example:

4. In the example, the valid launch page is "index_lms.html" in the root of the package. If the href value was

"chapter1/indexlms.html" then the launch page "index_lms.html" would be found inside a "chapter1" folder.

5. Edit the learning activity to review the Launch Page that's currently selected. If it is not one of the valid launch

pages identified in the imsmanifest.xml file, then browse through the content package to locate and select the

proper launch page.

OBSERVING SCORM COMMUNICATION

When a SCORM-conformant LMS launches a SCORM course, it provides a standard Application Programmatic Interface

(API) that the course content can locate and communicate with. Typically the LMS does nothing more than load the

course content—it then just lies dormant, waiting for the SCORM course to issue commands.

While some courses don’t contact the LMS immediately, most courses do. Most courses will immediately attempt to

locate the SCORM API that’s provided by the LMS, and then issue the “initialize” command to inform the LMS that a

SCORM session is starting. Assuming that initialization is successful, the course content will usually issue additional

commands (such as get a value; set a value; permanently save progress changes to the LMS).

Both the course content and the SCORM API code exists in the learner’s web browser, which makes it possible for you

to observe exactly what any course is telling Learner Community’s SCORM API to do. In fact, Learner Community’s

SCORM API code was specifically designed to expose a clear view into that activity to help “demystify” SCORM, and to

give you and your content providers a great diagnostic tool.

Here’s how to observe SCORM communication (using Google Chrome):

1. Launch the course (to view its Enrollment Detail page). NOTE: The following works whether you’re in “Full

Screen View” or not (either view is fine).

2. Before launching the SCORM learning activity, press F12 to open the Developer Tools.

3. If the Developer Tools opens in the same window, click the “unlock into separate window” icon to move

the tools into their own window.

4. Click the Console tab. NOTE: There may be messages already displayed in the console. You can click the “clear

console log” icon to start fresh.

5. In the Console window’s prompt, type exactly the following case-sensitive command:
 scormNS.doLog(true)

then press Enter. You should see the following:

6. Now launch the SCORM learning activity, and watch the Console window to see what (if any) communication

the SCORM course is making to Learner Community’s SCORM API. TIP: Position the “Developer Tools” window,

and the browser window that has the SCORM course content so that you can see both windows at the same

time.

Learner Community® Diagnosing Content Package Issues Page 8

FIRST LAUNCH

The first time a SCORM 1.2 or 2004 course is launched, Learner Community will prepare its API—the console should

show a message such as “Validating element definitions for SCORM X” where X is either 1.2 or 2004. That validation

does internal sanity checks on some data definitions. Depending on the SCORM version you may see some warnings

about certain items that aren’t validated automatically. For example, here’s the first entries when launching any

SCORM 2004 content package:

Those are just expected FYI warnings, not an error. If you launch another SCORM 2004 activity during the same session,

the element definitions will already be validated, so those messages would not appear. (If you launched a SCORM 1.2

activity during the same session, those element definitions would be validated once.)

After validating element definitions, Learner Community essentially goes dormant and just waits for the SCORM course

to locate the API and issue valid commands. If no other console activity appears, then the SCORM course may be one

that doesn’t do any communication until you exit the course, or maybe not even until you complete the entire course

in a single session. However, if it never initiates communication, then it may not be a SCORM course; perhaps it is a

SCORM course that can’t locate the SCORM API provided by Learner Community; perhaps the incorrect “launch page”

is selected. Check with your content publisher to resolve any of those issues.

Most courses will immediately attempt to locate the SCORM API provided by the LMS, and will alert the learner if the

API could not be located. NOTE: Learner Community’s SCORM API is located “in plain sight” at the root of the

enrollment detail window, so hopefully you’ll never encounter a course that’s unable to find it!

Learner Community® Diagnosing Content Package Issues Page 9

UNDERSTANDING THE MESSAGES

After locating the SCORM API, most courses will immediately issue the command that starts up the API. The specific

command varies by SCORM version: in SCORM 1.2 the command is LMSInitialize, while in SCORM 2004 the

command is Initialize. Here’s an example of the first launch of a SCORM 2004 content package:

Each time the course content issues a valid SCORM command, Learner Community’s SCORM API will output a similar

“block” of messages to show you exactly what’s happening. The command starts with “/ SCO called” followed by

the command name and parameters issued by the course content (“SCO” is short for “Shareable Content Object” which

is a fancy phrase which you can think of as “the course content”).

The command ends with “\ Result for” again followed by the command name and parameters issued by the SCO

(the course content) followed by “(resultStatus) -> returnValue. In the example above, the resultStatus is

OK (meaning no error) and the value that the command is returning to the SCO is the text “true”. If a SCO issues a

command that isn’t appropriate or valid at the time, the resultStatus would not be OK but instead would show “Error

#=Info” where # is an error number as defined in the SCORM specifications, and Info is a description of that error

code, possibly followed with additional details.

In between the command start and end lines might be additional details that start with “|”. In the example above,

Learner Community’s SCORM API tells you exactly what it was doing:

• Fetching data from LMS.

Learner Community’s client-side API is requesting information from a Learner Community server.

• Fetch succeeded.

In this case, the fetch was successful. If any error had occurred it would be noted here instead.

• ScormDatabase - 5 keyValuePairs (followed by the 5 “key = value” pairs).

This lists all the values currently defined in the local “ScormDatabase” that the client-side API is maintaining in

memory in your web browser. Those values will change as the SCO interacts with the API, and certain

commands will again display the current local ScormDatabase values (for example, the “save changes”

command will output the values so you can see exactly what values are being submitted to the LMS).

NOTE: Other sources could also add messages into the Console that are completely unrelated to the SCORM API. In

general, if the message is outside a group of messages as shown above, or appears within the group but doesn’t follow

the same display pattern, then it’s not a message from Learner Community’s SCORM API.

Learner Community® Diagnosing Content Package Issues Page 10

More Examples

After starting up the API, a typical course will issue one or more commands to “get” or “set” certain values that it

needs. After issuing certain commands, SCOs will often call a “get last error” command to determine whether the

previously-issued command was successful. Continuing the example of the first launch of a SCORM 2004 content

package, we’ll walk through what happened after the Initialize command executed successfully:

SCO retrieved the current

“success status” value, then

verified the retrieval was

successful.

SCO retrieved the current

“completion status” value,

then verified the retrieval

was successful.

SCO set the “completion

status” to “incomplete”.

SCO set the “exit” value to

“suspend”.

SCO retrieved the “mode”

value, then verified the

retrieval was successful.

SCO set the “session time”

value to 0.17 seconds.

Now that the SCO has set

some values, it decided to

issue the Commit

command, which asks the

LMS to store all the current

values in permanent

storage.

The LC SCORM API lists all

the current local values,

then submits to the LMS,

and finally reports that the

submission succeeded.

At this point if the learner

lost their internet

connection or abruptly

killed their web browser

window, whatever progress

had been saved by the

course content would be

the starting point the next

time the learner launched

the same learning activity.

Learner Community® Diagnosing Content Package Issues Page 11

Sanity Checks

Learner Community’s SCORM API performs basic “sanity checks” on the commands that the SCO issues. If the SCO

provides data that can be identified as not being valid for a particular command, it will be reported. For example, here’s

what would be reported if a SCO tried setting the “completion status” to an invalid value of “bogus”:

/ SCO called SetValue("cmi.completion_status", "bogus")
\ Result for SetValue("cmi.completion_status", "bogus")

(Error 406=Data model element type mismatch./Element
"cmi.completion_status" cannot be set to the value "bogus" because it
does not fit the element data type.) -> "false"

Instead of (OK) -> "true" the result status is reporting error 406 (data model element type mismatch) with the

additional detail that “cmi.completion_status” cannot be set to the value “bogus” because it does not fit the element

data type.

Whether a particular error is “meaningful” (that is, whether it is an indication of a problem with the way the course

content is written) or “expected” can depend on the context. In general, errors from a “get value” command are

usually not a problem, while errors from a “set value” usually indicate an error where the course content is not

following the SCORM rules. Rather than accepting a value that doesn’t adhere to the documented SCORM standards,

the improper value will be ignored.

Final Example

To “round out” the example of the first launch of a SCORM 2004 content package, we completed the course, and are

navigating to a different learning activity. Typically the SCO will issue a “commit” to be sure that all the current data

values, and will then issue the command that shuts down the API; here’s the final command the example course issued:

Learner Community’s SCORM API listed all the current local values, submitted them to the LMS, and the submission

succeeded. NOTE: The value for “suspend_data” is truncated in the image above, but the full value is displayed in the

console.

Many of the SCORM data element names and values are self-explanatory (e.g. “cmi.completion_status” indicates

whether the SCO is complete or not). Some data elements require specific values, while others (such as

“cmi.suspend_data”) accept almost any value provided by the SCO—and the values themselves only mean something

to the SCO itself. (Refer to SCORM documentation for details about a data element.)

Learner Community® Diagnosing Content Package Issues Page 12

SERVER-SIDE OBSERVATION

If your SCO misbehaves only on a device that doesn’t have an easy “Developer Tools” option (for example, an iPad)

then there is a way for Leaner Community support to temporarily enable server-side diagnostics on the learner account

that you’re using for testing (presumably on Staging). After diagnostics mode is enabled on a specific learner account,

all server-side SCORM communication will be logged for future analysis.

Server-side logging can’t show the same level of detail that the client-side messages can, because most SCORM API

commands execute entirely on the client-side. Only initialize, commit, and terminate/finish commands cause the client-

side API to communicate with the server—and there are actually only two server-side commands:

• BeginSession (triggered when the SCO issues the initialize command)

• UpdateSession (triggered when the SCO issues either a commit or a terminate/finish command).

You can still learn a lot from the less granular server-side logging enabled. After testing the content:

If the server-side log was empty, then you would know that either the content didn’t issue any valid SCORM

API commands on the device in question, or it did but LC’s SCORM API was somehow failing on that device

(which is not likely—and is definitely not the case if you have any other SCORM content that functions

properly on the same device).

If the server-side log shows activity, then you would know that not only is the content successfully issuing

SCORM API commands on the device, but also that LC’s SCORM API is processing those commands

successfully. (If one command functions successfully, all commands should function successfully—as long as

the content is issuing valid SCORM API commands.) The log will also identify which command was executed

(BeginSession or UpdateSession) along with any values received.

